ENTRANCE EXAMS

Mathematics

Duration: 2 hours

- 1. Factorize the polynomial $p(x) = x^3 + 2x^2 x 2$ completely
 - a) (x + 1) is a factor of p(x). True or False? 0.5mk
 - b) Divide p(x) by (x+1) the remain is -6. True or False? 0.5mk
- c) $p(x) \equiv (x + 1)^{2}(x + 2)$. True or False? 0.5mk
- 2. Consider the quadratic equation $x^2 2x k = 0$
- a) The value of k for which the equation has equal roots is (0.5mk)
- b) The solution to the quadratic equation is (0.5mk)
- 3. Consider the logarithmic equation x + 3 = 4
- a) $3 \equiv \frac{1}{x}$. True or False? (0.5mk)
- b) The solution to the equation is and....
- 4. Let $A = \{1, 2, 3, 4, 5\}$ and R defined on A by aRb if and only if a + b is even.
- a) R is Anti-Symmetric. True or False? 0.5mk
- b) R is an equivalence relation. True or False? 0.5mk
- 5. The function $g: R \left\{\frac{1}{2}\right\} \rightarrow R$, $g(x) = \frac{1+x}{1+2x}$
- a) State the range of g. Ans = $R \left\{\frac{1}{2}\right\}$ 0.5mk
- b) g is and odd function. True or False? 0.5mk
- 6. In a certain AP with first term 3, the sum of the 1st term and the 5th term is 18.
- a) Find the common difference. Ans = 3.5 mk
- b) The sum of the first ten terms is 165. True or False? 0.5mk
- 7. $\frac{5}{(1+3x)(1-2x)} \equiv \frac{A}{1+3x} + \frac{B}{1-2x}.$
- a) The value of A and B is ...and... respectively . Ans = 3, 2.0.5mk
- b) The range of values of x of which the expansion is valid is...... $Ans = -\frac{1}{3} < x < \frac{1}{3} \quad 0.5 \text{mk}$

ENTRANCE EXAMS

- 8. $\frac{\sin\theta + \sin 2\theta}{1 + \cos\theta + \cos 2\theta} \equiv \tan\theta$. True or False? 0.5mk
- 9. Given that $f(\theta) = \sin\theta \sqrt{3}\cos\theta$, express $f(\theta)$ in the form $r\sin(\theta \alpha)$, where r > 0 and α is acute.
- a) If $f(\theta) \equiv r \sin(\theta \alpha)$ then r and α is respectively......and...... 1mk
- b) The Maximum and Minimum value of $\frac{2}{f(\theta)+3}$ is....and....respectively. 1mk
- 10. If the sum of the first n terms of a series is given by $s_n = 2n^2 + n$
 - a) 4n + 3 is an expression of the nth term of this series. True or False? 0.5mk
 - b) This series is an Arithmetic sequence. True or False? 0.5mk
- 11. A function

$$f(x)(x^2 - 3)$$
 for $0 \le x < 2$ 4x - 7 for $2 \le x < 4$ is such that $f(x) = f(x + 4)$

- a) State the period of this function. Ans = 4.0.5 mk
- b) Find, f(27) = ... and f(-160) = ... 0.5mk*2
- 12. Two Circles with radius r_1 , r_2 and centers C_1 , C_2 respectively are said to be orthogonal if;
 - a) $dist(C_1, C_2)^2 = r_1^2 + r_2^2$
 - b) $dist(C_1, C_2)^2 = r_1 + r_2$ 0,5mk
 - c) $dist(C_1, C_2)^2 = |r_1 r_2|$

13.

- a) A = 0.5 mk
- b) a = 0.5 mk
- c) B = 0.5 mk
- 13. Simplify the following leaving your answer in Surds
 - a) $tan60^0 = 0.5mk$

ENTRANCE EXAMS

b)
$$sin105^0 =$$
 0.5mk

- 14. Given that $Z_1 = \sqrt{3} + i$ and $Z_2 = 1 3i$
 - a) The modulus of $\frac{Z_1}{Z_2}$ is......0.5mk
 - b) The argument of $\frac{Z_1}{Z_2}$ is...... 0.5mk
- 15. Given the function of a curve $y = \frac{x}{(x-1)(x-4)}$
 - a) State the Vertical asymptotes......
 - b) The Horizontal asymptote is at y = 1. True or False
 - c) The (2, 1) is a turning point of the curve y. True or False 0.5mk
- 16. Let $A = \{1, 2, 4\}$ and R be a relation defined on A. Given that

$$R = \{(1, 1), (1, 4), (2, 2), (2, 1), (2, 4), (1, 2), (4, 1), (4, 2), (4, 4)\}.$$
 R is

- A) Reflexive B) Symmetric
- C) Anti symmetric D) Transitive 0,5mk
- 17. When simplified $\frac{2}{x-1} \frac{1}{1+x}$ reduces to:

A)
$$\frac{x+3}{(x-1)x}$$
 B) $\frac{x+3}{x^2-1}$ C) $\frac{3(x+1)}{x^2-1}$ D) $\frac{x+2}{x^2-1}$

C)
$$\frac{3(x+1)}{x^2-1}$$
 D) $\frac{x+2}{x^2-1}$

0,5mk

18. The value of angle t that is angle PSQ in **Figure 1** above is

- A) 64^{0} B) 42^{0} C) 22^{0} D) 18^{0} 0,5mk
- 19. The radius of the circle whose equation is $x^2 + y^2 6x + 4y + 4 = 0$ is;
 - B) $\sqrt{6}$ A) 6
- C) 4
- D) 3 0,5mk